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Canberra, ACT 0200, Ausvalia 
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Abstract. We consider the six-vertex model with anti-periodic boundary conditions across a 
finite suip. The row-to-row vansfer matrix is diagonalized by the 'comuting transfer matrices' 
method. From the exact solution we obtain an independent derivation ofthe interfacial tension Of 
the six-vertex model in the anti-ferroelectric phase. The nature of the corresponding integrable 
boundary condition on the XXZ spin chain is also discussed. 

1. Introduction and main results 

The six-vertex model and related spin-; XXZ chain play a central role in the theory of 
exactly solved lattice models [I]. Typically the six-vertex model is 'solved' by diagonalizing 
the row-to-row transfer matrix with periodic boundary conditions.' Several methods have 
evolved for doing this, including the coordinate Bethe ansatz [1 ,2] ,  the algebraic Bethe 
ansatz [3,4], and the analytic ansatz [5] .  All of these methods rely heavily on the 
conservation of arrow flux from row to row of the lattice. 

In terms of the vertex weights (see figure 1) 

a = p sinht(A- v )  b = p s inhf ( I+  U) c = p sinhi (1.1) 

A ( u ) ~ ( u )  = $(A - V)q(U + 2A') +@(A + u ) ~ ( u  - 2A') 

A' = A - irr (1.3) 
@(U) = pNsinhN($u) ( 1.4) 

the transfer matrix eigenvalues on a strip of width N are given by [I]  

(1.2) 
where 

n 

q ( u ) = n s i n h f ( u - u k ) .  
l i d  

The Bethe ansatz equations follow from (1.2) as 

(1.5) 

The integer n labels the sectors of the transfer mamx. 
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Figure 1. Standard venex configurations and corresponding weights. 

Here we consider the same six-vertex model with anti-periodic boundary conditions. 
That such boundary conditions should preserve integrability is known through the existence 
of commuting transfer matrices [6]. However, the solution itself has not been found 
previously. In section 2 we solve the anti-periodic six-vertex model by the ‘commuting 
transfer matrices’ method [I]. This approach has its origin in the solution of the more 
general eight-vertex model [7],  which, like the present problem, no longer enjoys arrow 
conservation. We find the transfer matrix eigenvalues to be given by 

A(u)q(u) =@(A - u ) ~ ( u  + 2h’) - @(A + ?J)q(u - 2h’) (1.7) 
where now 

N 

q(u) = n s i n h  :(U - ux) . 
k= I 

In this case the Bethe ansatz equations are 

In contrast with the periodic case the number of roots is fixed at N. 

model in the anti-ferroelecmc regime. Defining x = era, our final result is 
In section 3 we use this solution to derive the interfacial tension s of the six-vertex 

(1.10) 

in agreement with the result obtained from the asymptotic degeneracy of the two largest 
eigenvalues [ 1,8]. 

With anti-periodic boundary conditions on the vertex model, the related XXZ 
Hamiltonian is 

(1.11) 

where ux, U? and uz are the usual Pauli matrices, with boundary conditions 
U;*] = U; U;+, = -U: z = 4;. (1.12) 

This boundary condition has appeared previously, being of relevance to the operator content 
of the Ashkin-Teller chain [9] ,  and is amongst the class of toroidal boundary conditions for 
which the operator content of the XXZ chain has been determined by finitesize studies 
[9, IO]. Thus we see it is an integrable boundary condition, with the eigenvalues of the 
Hamiltonian following from (1.7) in the usual way [I], with result 

2cosh;h sinhh 
E = N c o s h h - c .  

j=1 sinh i u j  + sinh f h  . 
(1.13) 

We anticipate that the approach adopted here may also be successful in solving other 
models without arrow conservation. The solution given here can be extended, for example, 
to the spin-.$ generalization of the six-vertex model/XXZ chain [ll]. 
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2. Exact solution 

To obtain the result (1.7) we adapt, where appropriate, the derivation of the periodic result 
(1.2) (specifically, we refer the reader to chapter 9 of [I]). 

We depict a vertex and its corresponding Boltzmann weight graphically, as 

W ( P . 4 B .  P’) = fl -+- d 

01 

where the bond ‘spins’ /.L, a, p and 1‘ are each +I if the corresponding mow points up or to 
the right and -1 if the arrow points down or to the left. Thus in terms of the parametrization 
(1.1) the non-zero vertex weights are 

w(+, +I+, +) = w(- ,  -1, -, -1 = a  
w(+, -I-, +) = w(-, +I, +, -) = b 
w(+. -I+, -) = w(-, +I, - 9  +) = c .  

The row-to-row transfer matrix T has elements 

BI h BN 

oil U2 eN 

where a = (aI.. . . , UN] ,  /3 = (81. ....,&], and the anti-periodic boundary condition is 
such that p N + ,  = -p,. Now consider an eigenvector y of the form 

(2.3) 

where g;(a;) are two-dimensional vectors. From equation (2.2) the product Ty can be 
written as 

y = gl 8 gZ8 ’.‘ @ gN 

in equation (2.4) is the key difference with the periodic case. However, it does not effect 
much of the working. Using equations (2.1) and (2.5) we have 

In particular, there still exist the same 2 x 2 matrices PI, . . . , PN such that 

G ~ ( ( u )  = PjH;(a)P;: (2.8) 
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where Pi and Hi are of the form 
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As for the periodic case, (2.8) follows from the local ‘pair-propagation through a vertex’ 
property, i.e. the existence of gi(or), gj(ru), pi(01), pi+]@) such that 

CW(P,~IB, pLl)gi(B)Pi+l(pL)) = gj(u)pi(p) (2.10) 
P 4 f  

for 01, p = i l .  The available parameters are [l] 
gi (+)  = 1 a(-) ri 

g((+) = a  gi ( - )  = -ar; e 0 1 + u h / 2  

pi(+) = 1 pi(-) = ri 
(2.1 1) 

where q = i l  and 
(2.12) . A ( q + ~ . + % i )  . r I -  - (-Yr e 

However, ~ N + I  needs to be different from the periodic case (where 
anti-periodicity suggests that we require 

= p l ) .  The 

(2.13) 

where h is some scalar. Since we already require pi(+) = 1 and p i ( - )  = ri, we must have 

(2.14) 
1 1 

h r 
r and rN+l = h = r l = - = -  

In addition, 
r Z  = (-)Ne-*(~i+...+0~) 

To proceed further, we write PI and PN+~ in full, 

Then 

(2.15) 

(2.16) 

(2.17) 

However, as for the periodic case, we have 

which follows from (2.7)-(2.9). Thus 

(2.19) 
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At this point it is more convenient to write 

y ( ~ ) = h i ( u ) ~ h h z ( ~ ) ~ . . . ~ ' h ~ ( ~ )  
where we have defined 

(2.21) 

The result (2.20) can then be more conveniently written as 
1 
r T(u)y(u)  = -raNy(u + 2h') + - b N y ( u  - 2h'). (2.23) 

Also let 

(2.24) 

with r = i exp($  E,"=, ai). Then from (2.23) we have 

T(u)Y:(u) *@(A - U ) Y $ ( U  + 21') T @(A + u)$(u - 2h'). (2.25) 
To proceed further, let Q$(u) be a matrix whose columns are a linear combination of 

T ( u ) Q ~ ( u )  = * @ ( ~ - V ) Q ~ ( U + ~ A ' ) ~ @ ( A + U ) Q : ( U  -2h ' ) .  (2.26) 

One can show that the transpose of the transfer matrix has the property T ( - U )  = 'T(u). 
With Q;(U) = '&(-U) it follows from (2.26) that 

y,' with different choices of U (2N altogether). It follows from (2.25) that 

&(u)T(u) = h @ ( h - ~ ) Q f ( u + 2 A ' )  + @ ( h f u ) & ( u  -2h ' ) .  (2.27) 
Now let QR(u) = Q ~ ( u )  and QL(u) = Q i ( u ) t .  Then we can show that the 'commutation 
relations' 

Q L ( u ) Q R ( u )  = Q L ( V ) Q R ( U )  (2.28) 

hold for arbitrary U and U .  This result follows if we can prove that Fe,,, = 'y;(-u)y$(u) 
is a symmetric function of ( U ,  U) for all choices of U and~u'. Using equations (2.24), (2.21) 
and (2.22) this function reads 

(2.29) 

Now suppose that in U and U' there are p pairs (uikr U;), where u;~ + U! = 0 with 
k = 1 ,  . . . , p .  The terms in Fro( which involve these utt (in the prefactor and In the j = ia 
terms) are manifestly symmetric in (U, U). The remaining terms are exactly of the form 
(2.29) with N + N - p after relahelling of sites. We can thus restrict ourselves to the, case 
where ui = U;, i = 1, . . . , N', for all N'. To prove this case we proceed inductively. From 
equation (2.28) we have 

!t 

t Equivalent results are obtained using the other choice of sign. 
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Let us now denote F,, = FN(u1, . . . , u M ) .  By inspection, Fl(u1) and Fz(ul,uz) are 
symmetric in ( i t ,  U). Suppose FN-z (uI , .  . . , u+2) is symmetric in (U, U) and, furthermore, 
that Uk + Uk+l = 0 for some k. Then from (2.30) we have F N ( U I .  . . . , u k ,  -a, ..., U N )  = 
F N - ~ ( u ~ ,  ..., & , & + I ,  . . . , U N - Z )  times a symmetric function of (U, U), which is therefore 
symmetric in (U. U). This is true for all 1 < k < N - 1. The only case left to consider 
is therefore U I  = ul = . .. = U N .  But from (2.30) we have F N ( U I ,  u2.. . . , U,V-~ ,  U,)  = 
FN-Z(UZ, . . . , " 1 )  times a symmetric function of (U. U), which is again symmetric. Thus 
by induction on N ,  the assertion (2.28) follows. 

As in the periodic case, we assume that &(U) is invertible at some point U = uo and 
define 

M T Batchelor et a1 

Q ( U )  = Q R ( U ) Q ~ ' ( U O )  = Q I ' ( u ~ ) Q ~ ( u ) .  
Then from (2.27) and (2.28) we obtain 

(2.31) 

T(u)Q(u)  = Q ( u ) T ( u ) = - ( ~ - u ) Q ( u + ~ ~ ' ) - - ( A + U ) Q ( U - - ' )  (2.32) 
and Q(u)Q(u)  = ~ Q ( u ) Q ( u ) .  This allows T(u) ,  Q ( u )  and Q ( u i 2 h ' )  to be simultaneously 
diagonalized, yielding the relation (1.7) for their eigenvalues. The precise functional 
form of the eigenvalue q(u) of Q(u) ,  given in (1.8), follows from (2.32) by noting that 
T(u  + 2ni) = -T(u) and considering the limits U --f fw. 

3. Interfacial tension 

In this section we derive the interfacial tension by solving the functional relation (1.7) and 
integrating over the band of largest eigenvalues of the transfer matrix [12]. We consider 
the case where N ,  the number of columns in the lattice, is even. The partition function of 
the model is expressed in terms of the eigenvalues A(u) of the row-to-row transfer matrix 
T ( u )  as 

Z = [A(u)IM (3.1) 
where the sum is over all 2N eigenvalues. 

The interfacial tension is defined as follows. Consider a single row of the lattice. For 
a system with periodic boundary conditions, in the A + 00 limit we see from (1.1) that the 
vertex weight c is much greater than the weights a and b, so in this limit, the row can be in 
one of two possible anti-ferroelectrically ordered ground states. These are made up entirely 
of spins with Boltzmann weight c,  and are related to one another by arrow-reversal. 

When we impose anti-periodic boundary conditions, this ground-state configuration is 
no longer consistent with N even. To ensure the anti-periodic boundary condition, vertices 
with Boltzmann weight c must occur an odd number of times in each row. Thus the lowest- 
energy configuration for the row in the A + 00 limit will consist of N - 1 vertices with 
weight c, and one vertex of either types a or b. This different vertex can occur anywhere 
in the row. 

As we add rows to form the lattice, the a or b vertex in each row forms a 'seam' 
running approximately vertically down the lattice; it can jump from left to right but the 
mean direction is downwardst. A typical lowest-energy configuration is shown in figure 2. 
The extra free energy due to this seam is called the interfacial tension. This will grow with 
the height M of the lattice, so we expect that for large N and M the partition function of 
the lattice will be of the form 

(3.2) Z - exp [(-NMf - Ms)/ksT] 
t This is the analogue of the anti-fe"agneri& seam in the king model [13]. 
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Figure 2. A typical lowestenergy state of the 
system with N even and anti-periodic boundaq 
conditions. The dotted line indicates the interface 
dividing the lattice into two domains. each of which 
is an anti-ferroelecrrically ordered ground state. 

where f is the normal bulk free energy, and s is the inteIfacial tension. 
We introduce the variables 

(3.3) 
Expressing the Boltzmann weights in terms of z and x ,  from (1.1) the model is physical 
when z and x are real, and z lies in the interval 

(3.4) 
We consider h > 0 in order that the Boltzmann weights are non-negative, so we must have 
x < 1. Let 

= , = e-~12, 

.lIZ < < -1/2 \z\x I 

where z j  = e-'JI2, j = 1, . . . , N ,  and 

V ( Z )  = A ( I J ) ( ~ . ? ~ - ' ) ~ ( - ) ~ / ~ .  

(3.5) 

In terms of these variables, the functional relation (1.7) becomes 

(3.7) 
Both terms on the right-hand side of (3.7) are polynomials in z of degree 3N, but the 
coefficients of 1 and z3N vanish, so z- 'V(z) is a polynomial in z of degree 2N - 2. We 
know how to solve equations of this form for both V ( z )  and Q ( z )  using Wiener-Hopf 
factorizations (see [7,8,14]). An alternative approach is via root densities [15]. 

We shall need some idea where the zeros of the polynomials Q(z) and V ( z )  lie in order 
to construct the Wiener-Hopf factorizations. From the anti-periodicity of T ( u )  we see that 
V ( z )  is an odd function of z ,  

V ( - z )  = -V(z) (3.8) 
so its zeros and poles must occur in plus-minus pairs. To locate the zeros in the z-plane, 
we consider z to be a free variable, and vary the parameter x, in particular, looking at the 
limit x + 0. 

We find the following; in the x --f 0 limit, N - 2 of the N zeros of &z) lie on the 
unit circle, the other two lying at distances proportional to x1l2 and For V ( z ) ,  there 
is the simple zero at the origin, and two zeros on the unit circle. The remaining 2N - 4 
zeros of V ( z )  are divided into two sets, with N - 2 of them that approach the origin and 
N - 2 that approach CO as x + 0. The N zeros of the two polynomials that lie on the unit 
circle are spaced evenly around the circle. 

As x is increased, the zeros of Q(z)  and z - 'V(z )  will all shift. We assume that the 
distribution of the zeros mentioned above does not change significantly as x increases. Thus 

2 - I N -  2 N -  Q(z)V(Z)  = (1 - z x ) Q(-zx) - (1 - z X) Q(-zx-'). 
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Figure 3. The mmplex z-plane; the curves C+ and 
C- are indicated, with the unit circle lying inside C-. 
The zeros of Q are indicated by (.) and the m s  
of z - 'V (z )  by (t). There are no zems of either 
function in the annulus between the contours C+ and 

the zeros that lie at the origin in the x -+ 0 limit move out from the origin as x increases, 
but not so far out as the unit circle, and similarly for the zeros that lie at CO. Also, the zeros 
that lie on the unit circle are assumed to stay in some neighbourhood of the unit circle as 
x increases (we will show that these zeros remain exactly on the unit circle as x increases, 
which is what happens in the periodic boundary condition case). 

Bearing in mind the above comments, we write 

Qcz, = Q l ( Z ) ( Z  - u)(z -@-I) (3.9) 

where &(z)  is a polynomial of degree N - 2 whose zeros are 0(1) as x + 0, and 
01, p = O ( X ' / ~ ) ,  so 01 lies inside the unit circle, @-' outside. 

Also, let V ( z )  = z(z - Q ) ( Z  - tz)A(z)B(z), where A(z )  and B(z) are both polynomials 
of degree N -2, the zeros of A(z) being all the zeros of V(z )  that lie inside the unit circle, 
B(z) containing all those that lie outside, and tl and t2 are the zeros that lie on the unit 
circle. Since V(z )  is an odd function, both A(z) and B(z) must be even functions of z, and 
we must have t~ = -rz, so letting fl = -t2 = f, we write 

V ( Z )  = Z ( Z ~  - I ~ ) A ( Z ) B ( Z ) .  (3.10) 

Draw the contours C+ and C- in the complex z-plane, both oriented in the positive 
direction, with C- outside the unit circle, C+ outside C-, and such that there are no zeros 
of &(z) or V(z )  on the boundary ofm inside the annulus between C- and Ct. Then p-' 
and all the zeros of B(z )  lie outside Ct (see figure 3). 

Define r (z )  as the quotient of the two terms in the RHS of the functional relation (3.7); 

(3.11) 

( r (z )  has no zeros or poles on or between the curves C+ and e-). Then in the x + 0 limit, 
we see that Ir(z)l - l/zN, so when IzI > 1, Ir(z)l c 1. Thus ln[l +r( z ) ]  can be chosen 
to be single-valued and analytic when z lies in the annulus between C- and Ct. We can 
therefore make a Wiener-Hopf factorization of 1 + r (w)  by defining the functions Pt(z) 
and P-(z) as 

(3.12) 
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Then P+(z) is an analytic and non-zero (ANZ) function of z for z inside C+, and P-(z) is 
an ANZ function of z for z outside C-. As IzI -+ 00, we note that P - ( z )  + 1. When z is 
inside the annulus between C- and C+, we have, by Cauchy's integral formula 

(3.13) 

We then define the functions V*(z); 

V+(Z) = P+(z)Q(-zx)/(z - P - 9  (3.14) 
(3.15) 

where V+(z) is an ANZ function of z for z inside C+, V-(z) an ANZ function of z for z 
outside C-. We have split V(z) into two factors, V+(z) and V-(z), with V(z) = V+(z)V-(z) 
when z is between C+ and C-. 

V-(Z) = P-(Z)(l - z2x-')N/[G1(z)(z -all 

Equating (3.10) with the expression V(z) = V+(z)V-(z) we have 

(3.16) 

The LHS (Ns) is an ANz function of z inside C+ (outside e-), which is bounded as IzI + 00 

and so the function must b e ~ a  constant, c1 say. Thus 
V+(Z) = CIB(Z) (3.17) 
V-(Z) = c;'z(z' - t')A(z). (3.18) 

When IzI < 1, we proceed in the same way. Draw the curves C; and CI ,  C; inside the 
unit circle, CL inside C;, and with (I and all the zeros of A(z) inside CL. 

In the limit x --f 0, Il/r(z)l - zN, so Il/r(z)l c 1. Thus In[ l+  l/r(z)] can be chosen 
to be single-valued and analytic between and on C; and CL. We can then Wiener-Hopf 
factorize 1 + l/r(z) by defining the functions P:(z) and P i ( z )  as 

(3.19) 

where P;(z) is ANZ inside C;, Pi(z) is ANZ for z outside CI .  As jzI -+ 00, PL(z) -+ 1. 
When z is in the annulus between C i  and CI, Cauchy's integral formula now implies 

(3.20) 

Define Vi(z) and VL(z) as follows: ~~ 

(3.21) 

VL(Z) = Pi(z)Q(-zx-')/(z -(I). (3.22) 

We have now factorized V(z) into two factors, V;(z) which is is ANZ for z inside C;, and 
Vl(z) which is ANZ for z outside CL. When z is in the annulus between C; and CL, we 
have the equality V(z) = V;(z)Vi(z). 

2 N  v;(z) = P;(z)(l - z x )  l [Q lcz )cZ  -@-I)] 

When z is inside this annulus, we equate (3.10) with V(z) = V;(z)Vi(z) to get 

(3.23) 

where now the LHS (RHS) is an AM function of z for z inside C; (outside CI). Thus both 
sides of the equation are constant, c2 say, and we have 

V;(Z) = c2(z2 - tZ)E(z) (3.24) 

VL(z) = c;'zA(z). (3.25) 
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From equations (3.17), (3.24) and (3.18), (3.25), we have the following: 

M T Batchelor et 01 

v ; ( z )  = (C2/Cl)V+(Z)(ZZ - t Z )  

V-(Z) = (CI/C2)Vl(Z)(Z~ - t 2 ) .  
(3.26) 

(3.27) 

To evaluate the constant cI/c2. consider (3.27) in the limit z + CO; we noted earlier that 
P-(z ) ,  PL(z)  -+ 1 as z + CO, so from (3.5), (3.15) and (3.22) we deduce that 

q / c z  = 1. (3.28) 
We may use equations (3.26) and (3.27) to derive recurrence relations satisfied by &), 

From equations (3.14), (3.21) and (3.26), we deduce the recurrence relation 
which we can solve explicitly in the N + CO limit. 

(3.29) 

valid when z is inside C;. In the limit N -+ CO, the P+ and Pi functions + 1, so we find 
that G ( z )  is given by 

N 00 1 -z2x4m--3 

1 - z x  
(1 - zZt-2x+Z) (1 - z(I-’x”-Z) (1 - zpx2m-2) 
(1 - zZt-Zx4m-4 ) (1 + za-’x”-’)  (1 + zpx”-l) Q(z)  = Q(0) IT ( 2 

m=l 
(3.30) 

This still contains the parameters t ,  (I and P. From equation (3.29) in the N -+ 00 limit, 
setting z = 0 we note that 

[&0)]2 = - t - Z ( I p - l .  (3.31) 

From equations (3.15), (3.22) and (3.27), we get the recurrence relation 

(3.32) 

which is valid for z outside C-. Taking the limit N -+ 00 once more, so that the functions 
P-(z) and PL(z) + 1, we get 

(3.33) 
To derive an expression for V ( z )  valid between C+ and Ci, using equation (3.27), we 

have 
V ( z )  = V + ( z ) V l ( z ) ( z 2  - t2) 

= G(-zx)G(-zX-’ ) (z2  - tZ) / [ ( z  - a)(z -p-L)l. (3.34) 

We use (3.30) for G(-zx) and (3.33) for G ( - d ) ,  and substitute into (3.34). This 
produces a lengthy expression for V ( z )  involving the parameters (I, p and t ,  which simplifies 
when one considers the oddness of V ( z ) .  The poles of V ( z )  must occur in pairs, and this 
is only possible if (I and f i  are related by 

up = --x. (3.35) 

Substituting this in, the infinite products involving (I and 6 cancel, and we get, from (3.6) 
and (3.34) 
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where 

This expression for the eigenvalue is still dependent on the parameter f ,  different values of 
t corresponding to different eigenvalues of the transfer matrix. All we know about t so far 
is that it is bounded as x + 0, and that it lies on the unit circle in the x + 0 limit. We 
shall now show that it in fact remains exactly on the unit circle as x increases. 

We substitute into the functional relation (3.7), using (3.30) and (3.33) to get an 
expression for the product &)V(z)  which is valid when z is in the annulus between 
C+ and CL. Substituting into (3.7), the function on the right-hand side is equal to zero when 
z is one of the N -2 zeros of Q~(z), or when z = +t.  For the latter case, substituting z = t 
and --I,  and dividing the resulting equations, we arrive at the following relation between 
a, x and t :  

a2 = -tZx (3.38) 

which means that f must satisfy 

[$(t)lN = fl (3.39) 

where $(f) is given by 

(3.40) 

This implies that t lies on the unit circle for all x ,  there being 2N possible choices for t .  
The partition function depends on t only via t 2 ,  so there are only N distinct eigenvalues. 
The right-hand side of (3.7) also vanishes when z is a zero of Gl(z) so in the same way 
we show that the zeros of & ( z )  lie exactly on the unit circle for all x .  As thezeros lie 
exactly on the unit circle, we may shift the curves C- and C; so that they just surround 
the unit circle. Hence our expressions for Q(z) are valid all the way up to the unit circle; 
equation (3.30) is valid for IzI < 1, and (3.33) is valid for IzI > 1. 

We now evaluate the partition function, as defined in (3.1), in the large-lattice limit. 
When U is real, the eigenvalues (3.36) are complex, so as N + m, the partition function, 
a sum over the N eigenvalues defined by (3.39), becomes an integral over all the allowed 
values o f t ,  

= f p( t )  L W ) l M  dt (3.41) 

where the integral is taken around the unit circle, and p( r )  is some distribution function, 
independent of N and M .  Substituting (3.34) into (3.41) then gives an expression for Z. 
(The number of rows M is even to ensure periodic boundary conditions vertically, and so 
the i sign in (3.37) is irrelevant.) 

The eigenvalue (3.36) contains two distinct types of factors; those that are powers of 
N ,  and those that are not. The terms that increase exponentially with N contribute to the 
bulk part of the partition function, the free energy per site in the thermodynamic limit. This 
factor is also independent o f t ,  and can be taken out of the integral (3.41). The integral is 
then independent of N, so we have, from (3.2) 

(3.42) 
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for the free energy per site in the thermodynamic limit. This result agrees with the result 
for periodic boundary conditions (equations (8.9.9) and (8.9.10) of [I]), 

From equation (3.2), the other factors in (3.34) make up the interfacial tension, given 

M T Batchelor et a1 

by 

(3.43) 

For M sufficiently large, we may evaluate this integral ushg saddle-point integration. The 
integral is given by the value of the integrand at its saddle point, together with some 
multiplicative factors that we can disregard as M + 00. The function G satisfies the 
relation 

G(z)  = G(-l/z) (3.44) 

which implies that the function has a saddle point when z = rti. Hence the integrand in 
(3.43) is maximized when 

t = faal. = f i z  . (3.45) 

As is arbitrary, the saddle points may lie off the unit circle; they will however lie inside 
the annulus between C+ and C l  because of the restriction (3.4), and so we will be able to 
deform the contour to pass through these points. Hence we arrive at the final result 

(3.46) 
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